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SUMMARY 
Four problems of fluid flow and heat transfer were designed in which non-orthogonal, boundary-fitted grids 
were to be used. These are proposed to serve as test cases for testing new solution methods. This paper 
presents solutions of the test problems obtained by using a multigrid finite volume method with grids of up 
to 320 x 320 control volumes. Starting from zero fields, iterations were performed until the sum of the 
absolute residuals had fallen seven orders of magnitude, thus ensuring that the variable values did not 
change to six most significant digits. By comparing the solutions for successive grids at moderate Reynolds 
and Rayleigh numbers, the discretization errors were estimated to be lower than 0 1 YO. The results presented 
in this paper may thus serve for comparison purposes as bench-mark solutions. 
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1. INTRODUCTION 

International journals for the numerical treatment of fluid flow and heat transfer problems are 
publishing more and more papers describing new solution. methods based on boundary-fitted, 
non-orthogonal grids. The evaluation of the new methods is very difficult for an observer, since 
the common criteria and test cases are missing. The situation is much clearer in the case of the 
methods for orthogonal grids: several well-established test cases with bench-mark solutions are 
available in the literature, e.g. lid-driven cavity flow,' buoyancy-driven cavity flow,', etc. 

For a potential user wishing to adopt one of the new methods, the essential criteria are: 
(i) accuracy of the method and (ii) computational effort at a given grid fineness. Both criteria are 
difficult to define precisely; however, a rough estimate is always possible if the methods are 
applied to the same test problem and if accurate reference solutions are available. Unfortunately, 
such reference solutions for non-orthogonal geometries could not be found in the literature at the 
present time. 

The aim of the present paper is to present four test problems for fluid flow and heat transfer 
calculation using non-orthogonal grids and provide accurate reference solutions which can be 
used for comparison purposes. These four test cases are described in detail in Section 2. To solve 
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them, a multigrid finite volume solution method was employed. The single-grid version of the 
method is described by Demirdiii. and the multigrid algorithm is described in conjunction 
with Cartesian grids by Hortmann et aL3 For this reason, only a short description of the solution 
method has been given. 

The conservation equations for mass, momentum and temperature are discretized on non- 
orthogonal grids using the finite volume approach and a collocated arrangement of  variable^.^ 
The equations are solved sequentially using the strongly implicit procedure of Stone,6 which is 
based on the ILU-decomposition. Pressure-velocity coupling is achieved via the SIMPLE 
algorithm.' The cross-derivatives resulting from non-orthogonality are treated explicitly,' except 
in the pressure-correction equation, where implicit treatment is necessary at severe non-ortho- 
gonality.' Central differences are used to approximate both convection and diffusion fluxes. For 
convection terms, the deferred-correction approach was used." Grid refinement is performed 
systematically by subdividing one coarse-grid control volume (CV) into four fine-grid CVs and so 
on. The multigrid procedure is based on V-cycles and the full approximation scheme. It is 
implemented as a full-multigrid algorithm, i.e. first the solution on the coarsest grid is obtained; 
then it is extrapolated to the next finer grid where it serves as the initial field for the two-grid V- 
cycles. The same procedure is repeated until the finest grid is reached. In this way, converged 
solutions on all grids employed in the solution process are obtained. They are used to evaluate the 
discretization accuracy, since the difference between two solutions on consecutive grids is 
proportional to the error on the finer grid.' 

In Section 2, the four test problems are defined. The results of the calculations and their 
discussion are presented in Section 3. Finally, some conclusions from the present calculations are 
drawn. 

2. DESCRIPTION OF THE TEST CASES 

The problems defined below are chosen so as to include the most important features of the 
complex flows encountered in engineering practice and also to provide good tests for the solution 
methods. The first three cases involve a quadrilateral solution domain with parallel walls at 
different inclinations. The obvious choice of numerical grid is to let the grid lines be parallel to the 
domain boundaries leading to uniform grid non-orthogonality. Since the grid non-orthogonality 
is one of the limiting parameters in many solution methods, the angles of 45" and 30" were chosen. 

The fourth test case involves domain geometry which requires non-uniform, non-orthogonal 
grids with variable aspect ratio and non-orthogonality (90"-45"). As far as grid non-orthogonality 
is concerned, these four cases are likely to cover all of the relevant effects. The first two test cases 
involve laminar flows in which the fluid motion is induced by the movement of one wall (lid- 
driven cavity flows). In the last two cases, the fluid flow is induced by buoyancy, and an equation 
for temperature needs to be solved as well. 

Various kinds of boundary conditions are also involved specified boundary values (wall 
velocity or temperature), symmetry conditions and adiabatic walls. From this point of view, the 
test cases can be seen as being representative of a wide class of problems. At moderate Reynolds 
and Rayleigh numbers, the coupling of the variables U, V, P and T is sufficient to test the 
efficiency of the solution method. The individual test cases with the appropriate boundary 
conditions are defined below. 

2.1. Test cases C1 and C2 
Lid-driven cavity flow has long served as a standard test case for orthogonal grids.' Appropri- 

ate test cases for non-orthogonal grids can be set up by inclining the side walls or by squeezing the 
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cavity (cf. Figure 1). Test case C1 corresponds to the angle /?=45", and test case C2 corresponds 
to /?=30". In both cases, L= 1, density p =  1 and lid velocity U,= 1 were used in the calculations. 
The Reynolds number, defined using the lid velocity, UL, and cavity length, L, was varied from 
100 to lo00 by changing the viscosity from 0.01 to 0401. 

2.2. Test case C3 

Buoyancy-driven cavity flow has also been a popular test case for heat transfer calculations on 
orthogonal grids2* An appropriate test case for a non-orthogonal grid is designed by squeezing 
the cavity, as in cases C1 and C2 (cf. Figure 2). The inclined walls are kept at constant 
temperatures TH and T,, respectively, while the horizontal walls are assumed adiabatic. The 
inclination angle was chosen to be /I = 45". Gravity acts in the vertical direction. The dimensions 

c L 

Figure 1. Geometry and boundary conditions for test cases C1 and C2 

X 

Figure 2. Geometry and boundary conditions for test case C3 
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and fluid properties used were: L =  1, p =  1, gravity constant g =  1, expansion coefficient B=O.l ,  
specific heat C,= 1, TH= 1 and Tc=O, so that the Rayleigh number is only a function of the 
viscosity and the Prandtl number: 

p2g#7L3AT 0 1 
Ra = Pr=--I-  Pr. 

P 2  P 
Flows at R a = 1 0 6  were studied for two values of the Prandtl number: Pr=O.l and 10, 

corresponding to p =  and respectively. 

2.3. Test case C4 

Heat transfer between concentric cylinders, both symmetrically and asymmetrically arranged, 
was often a subject for experimental and numerical heat transfer studies.'* Here, a similar test 
case is proposed, namely the heat transfer from a cylinder whose wall is maintained at a constant 
temperature TH = 1 and which is enclosed by a square duct. The vertical duct walls are kept at a 
lower temperature T, = 0 (cf. Figure 3). The horizontal duct walls are assumed adiabatic. Gravity 
acts in the vertical direction. Only one-half of the geometry is considered due to the existence of a 
vertical plane of symmetry. The cylinder centre is displaced from the duct centre vertically for 
By,  = 0.1; its radius is R = 0.2, and the duct dimensions are L = H = 1. Fluid properties were as in 
case C3; also, the values for TH = 1 and T, = 0 were the same, yielding a Rayleigh number of lo6 
based on the duct width. 

3. RESULTS AND DISCUSSION 

Assuming that the conservative equations for mass, momentum and energy (temperature), as 
given e.g. by Hortmann et ~ 1 . , ~  describe the laminar flow and heat transfer accurately and that the 
Boussinesq approximation is valid, the numerical solutions are affected only by the following 
errors:* 

(i) discretization errors (the difference between the exact solution of the correctly discretized 
equations on a given grid and the exact solution of the governing differential equations) 

(ii) convergence errors (the difference between the exact and the approximate solution of the 
discretized equations left over after stopping the iterations) 

(iii) algorithmic and programming errors (errors due to incorrect discretization, erroneous 
implementation of boundary conditions and programming errors, etc.). 

The third type of error, although common in practice, will be assumed to be absent here. 
Extensive tests of the computer code during the past five years justify this assumption, although 
we cannot offer any definite proof that such errors do not really exist. 

The second type of error was minimized in our calculations by iterating long enough for the 
variable values to be accurate to six most significant digits. Calculations were always started from 
zero fields. After each iteration, the sum of the absolute values of the residuals in all control 
volumes was calculated for each variable. These sums had to fall six to eight orders of magnitude 
before the iterations were stopped. In addition, variable values at a location chosen in the region 
of steep gradients were monitored. They were chosen to be accurate to six most significant digits 
as well. The same kind of control was implemented for the integral features such as mass flux in an 
eddy and heat flux through a wall. 

* This kind of error analysis was inspired by Ferziger.I3 
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Figure 3. Geometry and boundary conditions for test case C4 

The first type of error depends on the discretization scheme and the grid used. The order of the 
truncation error is often falsely interpreted as a measure of accuracy (one often finds statements in 
the literature like ‘. . . second-order accurate’). In fact, the order only states at which rate the 
error is reduced when the grid is refined, but it gives no information about the magnitude of the 
errors on a given grid. The truncation error, which acts as the source of the discretization error, 
depends on the grid spacing, higher-order derivatives of the dependent variable and-on non- 
orthogonal grids-on the angle between grid lines. As the grid is refined, the angle between grid 
lines and the variable derivatives at a given point tend to be constants; since they always appear 
as multipliers of the grid spacing, the truncation error-and therefore the discretization error- 
changes proportionally to the grid spacing to power n (n = 2 for second-order schemes).14 

By systematically refining the grid (doubling the number of CVs in each direction), it is possible 
to quantify the discretization error by evaluating the differences in solutions on consecutive 
grids.3 The multigrid procedure used here provides solutions on a sequence of grids, e.g. from 
10 x 10 to 320 x 320 CV (six grids), thus facilitating the error analysis. In the case of only first- 
order convergence, the discretization error on the finer grid would be of the order of the difference 
between the solutions on that and on the next coarser grid. For second-order schemes, the error is 
three times lower. In all the cases presented here the convergence is approximately of second 
order. Solutions from the finest grid will be presented and the difference to the next coarser grid 
solution will be given as a measure of the discretization error. The ‘grid-independent’ values can 
be obtained by means of Richardson extrapolation (adding one-third of the difference to the 
solution on the finer grid3). 

3.1. Test case C1 

Non-uniform grids, symmetrically expanding towards the centreline from all walls, were 
employed. The coarsest grid had 10 x 10 CV, the size of the smallest grid spacing near the wall 
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being L/20. By systematically refining this grid, the expansion ratio reduces as a square-root 
function, from 1.3524 on the coarsest grid to 1.0096 on the finest grid of 320 x 320 CV. However, 
the smallest Ax on this grid was L/757. Under-relaxation factors of 0 . 7 4 8  for velocities and 
0 . 3 4 4  for pressure were used (lower values were used for Re= 10oO). The computing times 
required to obtain solutions on all grids up to 160 x 160 CV at Re= 10oO were (253 iterations on 
the finest grid): 13 151 s on the SUN SPARCstation 1,2753 s on the CYBER 9958 and 633 s on 
CRAY YMP (no vectorization). The convergence criterion was, as earlier stated, the reduction of 
residual sums by seven orders of magnitude. For Re= 100, 70% less computing effort was 
required (91 iterations on the finest grid). 

Figure 4 shows the streamlines for (a) Re = 100 and (b) Re= 1OOO. The difference in the solution 
for the two Reynolds numbers is substantial. For Re= 100, the main vortex fills almost the whole 
cavity. The first counterrotating vortex lies deep in the corner and is three orders of magnitude 
weaker. For Re = 10oO, the primary vortex fills only about a third of the cavity. The largest vortex 

A -0.78OE-002 
B -0.156E-001 
c - 0 . Z U E - 0 0 1  
D -0.312E-001 
E -0.39OE-001 r -0.466E-001 
G - 0 . H 6 E - 0 0 1  
H -0 .624E-001 
I U.099C-OZ9 
J 0.736E-005 
K 0.147E-004 

A -0.594E-002 

C -0.178E-001 
D -0.237E-001 
E -0.297E-001 
F -0.356E-001 
G -0.416E-001 
H -0.475E-001 
I 0.099C-029 
J 0.200E-002 
K 0.401C-002 
L 0.602E-002 
H 0.803E-002 / 
B -o.iieE-ooi A -0 594E-002 

C -0  178E-001 
D -0  237E-001 
E - 0  297E-001 
F -0  356E-001 
G -0  416E-001 
H - 0  475E-001 
I 0 099C-029 
J 0 200E-002 
K 0 401C-002 
L 0 602E-002 
H 0 803E-002 

B -0  iiec-ooi 

(b) 

Figure 4. Predicted streamlines for test case C1, 320 x 320 CV grid: (a) Re= 100; (b) Re= lo00 
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is the second one, whose strength is only a factor of five lower than that of the primary vortex. The 
subsequent corner vortices are, as expected, about three orders of magnitude weaker. Their size 
can be accurately determined only if the results are accurate to more than five digits. 

The stream function values indicate the mass flux inside the vortex. The maximum or minimum 
value in one vortex centre defines the total mass flow across any line connecting the vortex centre 
with the vortex boundary (zero streamline, cavity wall). For the two strongest vortices, these 
values, denoted as $,in (first vortex) and $,,,ax (second vortex), were evaluated on all grids. Figures 
5 and 6 show the convergence of towards the grid-independent values as the grid is and 
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Figure 5. Variation of (a) minimum and (b) maximum stream function values in case C1, Re= 100, as a function of grid 
fineness 
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Figure 6. Variation of (a) minimum and (b) maximum stream function values in case C1, Re = 1O00, as a function of grid 
fineness 

refined for Re = 100 and Re = 1O00, respectively. It is very interesting to note that in the case for 
Re = 100, monotonic convergence from the first grid onwards is observed for both t/imin and t/imaX. 
However, for Re = 10o0, $,,,in has a maximum on the third grid (40 x 40 CV) and t/imax on the 
second grid (20 x 20 CV). If one had only solutions up to the grid with 40 x 40 CV, it would have 
been impossible to make an accurate estimate of the final value. However, the difference between 
the values obtained on the two consecutive grids is always decreasing, although not at a constant 
rate (second-order approximations used for both diffusive and convective fluxes). Thus, the 
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difference between the values obtained on the two last grids (160 x 160 and 320 x 320 CV) is a 
good measure of the accuracy of the final solution. Table I presents the and $max values 
calculated on the finest grid, together with the vortex centre co-ordinates and the error measure, E,  
defined as: 

The latter indicates the difference in the values obtained on 320 x 320 and 160 x 160 CV grids 
as a percentage of the finer-grid solution. Note that the second vortex is always weaker (especially 
for Re= 100), so that higher relative errors result. 

Convergence of the solution is also illustrated in Figure 7, which shows for Re= lo00 the 
profiles of U -  and V-velocity components along the centrelines indicated in Figure 1. Strong grid 
dependence is observed up to grid 4 (80 x 80 CV). The difference between the profiles obtained on 
the two finest grids is hardly visible. It is interesting that the V-profiles obtained on the two 
coarsest grids are even qualitatively different from the final solution. On the other hand, the 
difference between the profiles obtained from grid 3 to grid 6 is very small. These results indicate 
that in complex flow problems, the convergence of the solution method cannot be judged by 
monitoring one quantity change, especially not by monitoring a variable value at a single point. 
(There are points, e.g. at x = 0.3 on the V-profile in Figure 7(b), where the profiles on all but the 
coarsest grid intersect; at this point, one would see large changes from grid 1 (+ 006) to grid 2 
( - 0.04) and no change thereafter which could lead to wrong conclusions.) The velocity profiles 
predicted on the finest grid are presented in tabulated form in Tables I1 (for Re = 100) and I11 (for 
Re= 1o00). Only 15 points significant for the accurate reproduction of profile shape are given. 
The last two entries represent extremes in the profile. Note that the co-ordinate y* for U and x*  
for V is the normalized distance along the centreline and not the actual x- or y-co-ordinate. 

3.2. Test case C2 

In this case, the same type of grid as in case C1 was used. However, the angle between the grid 
lines was lower, namely 30". The results of the calculations are similar to those obtained for case 
C1. The purpose of this test is to demonstrate the ability of the solution method to handle extreme 

Table I. Minimum and maximum stream function values in vortex centres and their 
position, as predicted on the 320 x 320 CV grid for cases C1 and C2 

p = 45" p= 30" 

Re 100 lo00 100 lo00 

.7.0226 x lo-' 
1.1100 x 10-0 
5.4638 x lo-' 
0.02 19405 
3.6831 x lo-' 
3.3867 x lo-' 
1.4308 x lo-' 
1.3554620 

-5.3507 x lo-' 
1.3130 x 10-o 
5.7404 x 10- ' 
0.1068854 
1.0039 x lo-' 
7.7663 x lo - '  
3.9851 x lo-' 
0.3313280 

-5.3135 x lo-' 
1.1664 x 10-o 
3.7898 x lo-' 
0.033284 1 
5.6058 x 10- 
5.2692 x 10- ' 
1.4334 x 10- ' 
5.0257323 

- 3.8563 x lo-' 
1.4583 x 10-o 
4.1086 x lo-' 
0.0538782 
4.1494 x 
9.0386 x l o - '  
2.5501 x lo-' 
0.877696 1 



338 I. DEMIRDZIC, 2. LILEK AND M. PERIC 

x 

1.0 

.8 

.6 

.4 

.2 

0. 
-.2 0 .2 .4 .6 .8 1 .o 

[I 

(a) 

.3 

.2 

.l 

0. 

-. 1 

-.2 

Figure 7. Variation of the centreline velocity profiles in case C1, Re=1000, as a function of grid fineness: (a) U- 
component; (b) V-component 

grid non-orthogonality. The number of iterations required to reach a solution of the same 
accuracy at the same Reynolds number was about the same in both cases C1 and C2. 

Figure 8 presents the streamlines for (a) Re = 100 and (b) Re = 1OOO. They are similar to those of 
case C1 (cf. Figure 4). However, the number of corner vortices has increased (due to the smaller 
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Table 11. Selected values of the centreline velocity profiles for case C1, Re= 100 

8=45", Re= 100 

U Y* V X*  
~~~ ~ 

-8.0551 x lo-' 
-2.6196 x lo-' 
-4.3193 x lo-' 
-6.8882 x lo-' 
- 1.5506 x lo-' 
- 1.6634 x lo-'  
- 1.6872 x lo- '  
- 1.5730 x lo-' 
- 1.3105 x lo - '  
-8.9766 x lo-' 
-3.4731 x lo-' 

3.3532 x lo-' 
2.0103 x lo-' 
3.8137 x lo-' 
5.5574 x 10- 

- 1.69100 x lo-'  

1.1867 x lo-' 
2.1817 x lo-' 
2.8067 x lo-' 
3.5234 x lo-' 
5.3710 x lo-' 
5.7535 x 10- ' 
6.1 198 x lo-' 
6-5230 x lo-' 
68792 x 10- ' 
7.2125 x lo-' 
7.5234 x 10- ' 
7.8185 x lo-' 
8.3600 x lo-' 
8.8128 x lo-' 
9-1906 x 10- ' 

6.02904 x lo-'  

2,1657 x lo-' 
1,3305 x lo-' 
7.6484 x lo-' 
9,4120 x lo-' 
9.5630 x lo-' 
8.2656 x lo-' 
4.6757 x lo-' 

- 1.1270 x lo-' 
- 1.4721 x lo-'  
- 1.5539 x lo-' 
- 1.5682 x lo-' 
- 1.4635 x lo-' 
- 1.1 141 x lo-'  
-6.5443 x lo-' 

9.77007 x 10-2 
- 1.57402 x lo-' 

- 3.8092 x 10- 3 

4.9090 x lo-' 
1.1867 x lo-' 
3.0089 x lo-' 
3.7109 x lo-' 
45050 x lo-'  
5.0752 x lo-' 
5.8459 x lo-' 
6.5688 x lo-' 
7,8552 x lo-' 
8,3908 x lo-' 
8.6249 x lo-' 
8,8885 x lo-' 
9,1682 x lo-' 
9.5078 x lo-' 
9.7578 x lo-' 
4.18010 x lo-' 
8,78699 x lo-' 

Table 111. Selected values of the centreline velocity profiles for case C1, Re= lo00 

8=45", Re= lo00 

U Y* V X*  

2.6907 x lo-' 
3.4145 x lo-' 
24952 x 

- 8.7552 x 
-2.1473 x lo-' 
-4.0688 x lo-' 
-6.8730 x lo-' 
- 1.3455 x lo-' 
- 1.4954 x lo-' 
- 1.4412 x lo-' 
-1.1001 x 10-1 
-5.1863 x lo-' 

1.6822 x lo-' 
2.5888 x lo-' 
4.4780 x lo-' 

3.4331 x lo-' 
- 1.4954 x lo-' 

2.1455 x lo-' 
3.0917 x lo-' 
4.0864 x lo-' 
5.9377 x 10-1 
6.2988 x lo-' 
6.6593 x lo-' 
70070 x lo-' 
7.6352 x lo-' 
7.9275 x lo-' 
8.1013 x lo-' 
8.3600 x lo-' 
8.5968 x 10- ' 
9.1906 x lo-' 
9.3598 x lo-' 
9.5859 x 10- ' 
3.25940 x lo-' 
7.92748 x lo-' 

-3.3552 x 
- 1.3235 x lo-' 
-3.9715 x lo-' 
-4.3934 x 10-2 
-4.4009 x 10-2 
- 3.9277 x lo-' 
- 3,0630 x lo-' 
-8,9834 x lo-' 

7.9812 x lo-' 
1,4868 x lo-' 
2,2300 x lo-' 
2.4068 x lo-' 
2.4119 x lo-' 
1.7954 x lo-' 
4.7042 x loW3 

24576 x lo-' 
-4.4582 x lo-' 

4.9090 x lo-' 
1.0355 x lo-' 
240064 x 10- 
2.2950 x lo-' 
2.6066 x lo-' 
2.9272 x lo-' 
3.2594 x lo-' 
3.9456 x lo-' 
4.5984 x 10- ' 
4.9756 x 10- ' 
5.6594 x lo-' 
6.0290 x 10- ' 
6,7483 x lo-' 
8,2974 x lo-' 
9.8672 x lo-' 

6.3879 x lo-' 
24492 x lo-' 

angle B). The mass flow rates in the two main vortices, corresponding to the maximum or 
minimum stream function value inside the vortex, are given in Table I together with those of case 
C1. The primary vortex, driven by the lid movement, is weaker in the C2 case due to the smaller 
volume of the cavity. Actually, the values for the two cases for both Reynolds numbers relate 
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Figure 8. Predicted streamlines for test case C2, 320 x 320 CV grid (a) Re = 100; (b) Re= lo00 

to each other approximately like cavity areas. The second vortex is also stronger in the C1 case, 
except at low Reynolds numbers when it is confined to the corner and hence stronger at lower f l  
angles. Convergence of the and @,,, values in case C2 is qualitatively the same as in case C1 
(cf, Figures 5 and 6). The difference between the values calculated on the two last grids (cf. 
equation (1)) is given in Table I. The co-ordinates of the vortex centres are also given in Table I. 

The centreline velocity profiles, as predicted on all six grids, are presented in Figure 9 for 
Re = 1OOO. They indicate that an accurate profile description is obtained from the 80 x 80 CV grid 
onwards, the last two grids being indistinguishable. The fact that the difference between the 
profiles obtained on 80 x 80 and 160 x 160 CV grids is much lower than the difference between 
those obtained on 40 x 40 and 80 x 80 CV grids indicates that the order of convergence corres- 
ponds to the order of the flux approximation (second-order central differences). However, 
analysing the variable values at a given point could also be misleading here, since there are points 
on the profiles at which almost all of the grids yield identical values. The centreline profiles of the 
U- and V-velocity components, obtained on the 320 x 320 CV grid, are presented in tabulated 
form in Tables IV (Re = 100) and V (Re = 1OOO). Only 15 points significant for the description of 
the profile are given. The last two entries represent maximums or minimums on the profile. The 
co-ordinates x* and y* represent the relative distance between the cavity walls. 

3.3. Test case C3 

The geometry of this test case is identical to that of case C1. However, the flow is driven by 
buoyancy and, in addition to the Navier-Stokes equations, an equation for temperature has to be 
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Figure 9. Variation of the centreline velocity profiles in case C2, Re= 1O00, as a function of grid fineness: (a) U- 
component; (b) Y-component 

solved. The temperature is coupled with the velocity field through the convection terms, and the 
velocity field is coupled with the temperature through the buoyancy term which acts as a source 
of momentum: for example, in this particular case, the V-equation contains a source term: 
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Table IV. Selected values of the centreline velocity profiles for case C2, Re= 100 

p=30", Re= 100 

U Y* V X*  

-5.3649 x 
- 1.4682 x 
-3.2040 x lo-' 
-7.1895 x 
- 1.4988 x lo-' 
-1.7111 x lo-' 
- 1.7947 x lo-' 
- 1.7619 x lo-' 
- 1.6196 x 10- 
- 1.4573 x lo-' 
-9.9249 x 

3.3969 x 
1.9969 x lo-' 
5.2529 x lo-' 
7.7295 x lo-' 

- 1.7947 x lo-' 

2.0406 x 10- ' 
26463 x lo-' 
3.3022 x lo-' 
4.1801 x lo-' 
5.3222 x lo-'  
5.7066 x lo-' 
6.0745 x lo-' 
6.2988 x lo-' 
6.5688 x lo-'  
6.7483 x lo-' 
7.0905 x lo-' 
7.7087 x lo-' 
8.2656 x lo-' 
9.1237 x lo-' 
9.6328 x lo-' 

6.0745 x lo-' 

3.9397 x 10-3 
2.1914 x lo-' 
9.3419 x lo-' 
1.0104 x 10-1 
9.8228 x 
8.4957 x 
6.4102 x 
3.8595 x 

-7.3152 x lo-' 
-1.1133 x lo-' 
- 1.2854 x lo-' 
- 1'2915 x lo-' 
- 1.1649 x lo-' 
-8.6419 x 
-4.9836 x 

1.0172 x lo-' 
- 1.2951 x lo-' 

1.6518 x lo-' 
2.4882 x lo-' 
4.1333 x lo-' 
4.5050 x lo-' 
4.9756 x lo-' 
5.3710 x lo-' 
5.7535 x lo-' 
6.1 198 x 10- ' 
7.4856 x lo-' 
8.0673 x lo-' 
8.5683 x 10- ' 
8.7870 x 10- ' 
9.1682 x lo-' 
9.5078 x lo-' 
9.7578 x lo-' 

4.6449 x 10-1 
8.7074 x lo-' 

Table V. Selected values of the centreline velocity profiles for case C2, Re= lo00 

p=30", Re=1000 

U Y *  V X *  

22062 x 1.1867 x lo-' -6.9812 x 8.0811 x 
1.6317 x 3.7578 x lo-' - 5.3627 x 1.6518 x lo-' 
1.0790 x 4.5050 x lo-' - 1.6489 x lo-' 2.6066 x 10- 

-8.3579 x 5.2733 x lo-' - 1.9262 x lo-' 29272 x lo-'  
-3.5412 x 5.8459 x lo-' - 1'9873 x 3.2594 x lo-' 
-64159 x 6.2541 x lo-' - 1.9073 x 3.4326 x lo-' 
- 1.6661 x lo-' 7.2919 x lo-' - 1.4969 x 3.8046 x lo-' 
- 1.9062 x lo-' 7.5981 x lo-' - 1.6780 x 4.5984 x 10- ' 
- 1.9730 x lo-' 7.8916 x lo-' 3.8694 x 5.0251 x lo-' 
- 1.8630 x lo-' 8.1013 x lo-' 8.1783 x lo-' 5.7066 x lo-' 
- 1.4854 x lo-' 8.3600 x lo-' 1.2103 x lo-' 8.2009 x lo-' 
- 8.6502 x 8.5968 x lo-' 1.1023 x 8.7074 x lo-' 
-4.2563 x 8.8128 x lo-' 8.5607 x 9.0093 x 10- 

21071 x lo-' 9.1906 x lo-' 4.2321 x 9.6328 x lo-' 
46542 x lo-' 9.4916 x lo-' - 8.461 1 x 9.8828 x lo-' 
1.6344 x lo-' 3.7109 x lo-' 1.2123 x lo-' 8.2656 x lo-' 

- 1.9772 x lo-' 7.8185 x lo-' - 1'9979 x lo-' 3.1751 x lo-' 

where To and po are the reference temperature and the corresponding density, and T is the 
temperature at the centre of the control volume 6V. There is neither inflow nor outflow, and the 
strength of the recirculating flow depends only on the Rayleigh and Prandtl numbers. The aim of 
this test case is to assess the accuracy and convergence properties of the solution in the presence of 
the above additional coupling on a grid with an angle of 45" between grid lines. 
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The under-relaxation factors used in all the calculations for C3 were: 0.54.6 for velocities, 
0.24.3 for pressure and 0.7-0.8 for temperature (lower values for Pr=O.l) .  They were not 
optimized for minimum computing effort. At Pr = 10, about 60 fine-grid iterations were required 
for convergence. At Pr = 01, the rate of convergence was about five times slower. Figure 10 shows 
the grids used in the calculations (a quarter of each of the first four grids). The coarsest grid had 
14 x 12 CV in the x- and y-direction, respectively, non-uniformly distributed so that the highest 
resolution was achieved near the walls. The finest grid had 224 x 192 CV with the smallest 6x and 
6 y  amounting to L/467 and L/454, respectively. 

For reference purposes, the pure heat conduction problem was solved first. Figure 11 shows the 
isotherms of this case. In a square cavity, the temperature distribution would have been linear so 
that the isotherms would be straight vertical lines. In the present case, the temperature distribu- 
tion is more complex, since the adiabatic horizontal walls form an angle fl  with the isothermal 
walls (the isotherms must be orthogonal to the adiabatic walls, except for the two isothermal walls 
which form the angle f l ;  cf. Figure 11). It is interesting to note that the total heat flux through the 
isothermal walls, Qc, is the same in a square cavity and in a cavity squeezed to b=45". 

The predicted flow patterns for Ra= lo6 and for the two Prandtl numbers studied, 0.1 and 10, 
are shown in Figure 12. It is obvious that the Prandtl number has a significant influence on the 
flow and heat transfer. 

For Pr = 10, the flow is directed along the walls and it stays attached to them, forming a single 
roll. In the case of Pr =0.1, the main current in the recirculating region tends to separate from the 
horizontal walls (cf. Figure 12(a)). Another big difference is that for Pr=O.l ,  a large region of 
slowly moving fluid is formed in the central part of the cavity, including two free stagnation points 
and a counterrotating eddy in the centre. This complex streamline pattern is recognizable already 
on the coarsest grid. In the case of Pr = 10, one free stagnation point exists in the cavity centre, but 
there are no counterrotating eddies. 

Figure 13 shows the isotherms for the two Prandtl numbers. Their difference reflects the 
difference in flow patterns seen in Figure 12. The effect of convection is obvious from the 
comparison of Figures 13 and 1 1 .  Temperature gradients are steep near the isothermal walls, and 
a large stably stratified central region with horizontal isotherms results at both Prandtl numbers 
as a consequence of the convection process. 

Figure 10. Segments of the first four grids used for case C3 (one-quarter of each) 
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Figure 11.  isotherms of case C3 for pure conduction heat transfer 

(b) 
Figure 12. Predicted streamlines for case C3 on the 224x 192 CV grid: (a) Pr=O.l; (b) Pr=lO 



FLUID FLOW AND HEAT TRANSFER TEST PROBLEMS 345 

Isotherms 
Key ta contour rdueo 

A 0.94OEOOO 
B O . M O 1 O O O  
C 0.749X000 
D 0.849EOOO 
1 0.550E000 
P 0.449EOOO 
C 0.3491000 
H 0.240E000 
1 0.3501000 
J O.Wu-001 

(b) 

Figure 13. Predicted isotherms for case C3 on the 224 x 192 CV grid: (a) Pr =0.1; (b) Pr = 10 

Heat fluxes through the two isothermal walls and through any cross-section between the two 
adiabatic walls must be identical. In our conservative solution method, this is automatically 
ensured on any grid to within the convergence accuracy, here to six most significant figures. The 
total heat flux through one wall was normalized by the conduction heat flux of the square cavity, 
defined as 

thus giving the average Nusselt number, a. Note that here Qc=QN. 
Local heat fluxes per unit area, normalized with the normalization heat flux QN per unit area, 

represent the local Nusselt numbers. Table VI presents the values of the average and maximum 
Nusselt numbers, a and Numax, at the cold wall, the position of Nu,,,, and the minimum and 



346 I. DEMIRDiIC, 2. LILEK AND M. PERIC 

TableVI. Characteristic Nusselt numbers and stream function values for cases C3 and C4 as 
predicted on the finest grid 

c 3  c 4  

Pr 0.1 10 0.1 10 
- 
Nu 
E 

NuC 

$mi" 
X 

Y 
E 

$max 
X 

Y 
E 

5.98493 
0.08 14 
8.6778 
0.45644 

1 .o 
-9.68706 x 

0.78926 
0178 134 
O W I  1 6 
7.705 x lo-' 
1.271738 
0.702687 

200 

7.58013 6.73036 
0.05 16 0.022 

12.47 1 14,558 
0.17028 0.87891 

- 21.300 
- 20- 186 

1 .o 2.3 1407 
- 1.662127 x -8.78350 x lo- '  

0.57276 0.46453 
0.3 19989 005430 
0.0063 0.5 

- 1.212974 x lo-' 
- 0.27188 
- 0.24593 
- 0.104 

7.38376 
0.088 

19.949 
096484 

18.592 
O W 0  
2.31407 

1.419586 x 
0- 149 1 87 
0.668 196 
0.063 

maximum values of the stream function in the vortex centres with their position. Since the 
conductivity coefficient equals p/Pr, the conduction heat transfer is an order of magnitude higher 
for Pr = 0.1 than for Pr = 10. However, the Nusselt number is higher in the case of higher Prandtl 
numbers. Also shown is the difference between the %-values at the two finest grids, E, expressed 
as a percentage of Nu, as well as the corresponding information for the stream function values (cf. 
equation (1)). The accuracy is better than 0.1% in all cases, except for the stream function values 
in extremely weak vortices. Note also that y* represents the normalized co-ordinate along the 
wall. 

Flow at Pr = 10 was also predicted on uniform grids with the same number of control volumes. 
The number of iterations necessary to reach the convergence criterion was about 10% higher for 
the uniform than for the non-uniform grid (57 iterations on the finest grid; the sum of absolute 
residuals less than lo-' for all variables; the initial absolute residual sums of the order of lo-'). 
Figure 14 shows the convergence of (a) the average Nusselt number Nu and (b) the minimum 
value of the stream function as the grid is refined for both uniform and non-uniform 
arrangements. The non-uniform grid solutions are obviously more accurate at the same number 
of control volumes, but in both cases a convergence towards the same grid-independent value 
results. The rate of convergence is approximately second-order for both grid types. 

Table VII presents the variation of the local Nusselt number along the cold wall for Pr=O.l 
and 10, respectively, as calculated on the finest grid. Again, only 15 characteristic points are given, 
which are sufficient to describe the profile accurately. The four extra entries specify the extreme 
values on the profile (for Pr = 10, there is only one maximum and one minimum, while for Pr =O-1 
there are two of each). 
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lo t 

-.0015 

-.0016 

-.0017 
3. 

-.0018 

-.0019 

-.0020 
100 10000 

No. of CV 
(b) 

Figure 14. Convergence of (a) the average Nusselt number and (b) the minimum stream function value towards the grid- 
independent solution in case C3, Pr= 10, on uniform and non-uniform grids 

3.4. Test case C4 

This test case requires the use of a more complex, non-uniform and non-orthogonal grid (cf. 
Figure 15). Both the aspect and expansion ratios of the control volumes, as well as the inclination 
angle of grid lines, B, vary in a large range. This case simulates the complex geometries which are 
often encountered in practice. Figure 15 shows parts of the first four grids (one-quarter of each). 
The coarsest grid has 16 x 8 CV and the finest (fifth) grid has 256 x 128 CV. In all the calculations, 
the following under-relaxation parameters were used: 0.5 for velocities, 0.3 for pressure and 0.7 for 
temperature. About 200 fine-grid iterations were required to reach the convergence criterion 
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Table VII. Selected values of the profile of the local Nusselt number along the cold wall 
for case C3 as predicted on the 224 x 192 CV grid 

Pr=O.l P r=  10 

Nu, Y Nu, Y 

9.8089 x 
5.8932 x 10' 
7.3492 x 10' 
7.5761 x 10' 
7.5941 x 10' 
7.431 1 x 10' 
7-4024 x 10' 
7.5297 x 10' 
8.6385 x 10' 
8.6787 x 10' 
8.2469 x 10' 
6.0050 x 10' 
2.1332 x 10' 
2.3295 x 10' 
4.9777 x 100 
7.4024 x 10' 
2.1332 x 10' 
7.5941 x 10' 
8.6787 x 10' 

1-4309 x 
1.OoOo x 10-1 
1.5148 x lo- '  
1-8001 x lo-'  
1.9504 x lo-' 
2.5481 x lo-'  
2-7850 x lo-' 
3.1617 x lo-' 
4.3316 x lo-' 
4-5644 x 10-1 
5.2122 x lo-' 
6.7732 x lo- '  
9.7656 x lo-' 
9.8906 x lo-' 
9.9844 x lo-' 

2,7850 x lo-' 
9.7656 x 10' 
1.9504 x lo-'  
4.5644 x lo-' 

1.9757 x 10- ' 
8.1249 x 10' 
1.0674 x 10' 
1.2051 x 10' 
1.2428 x 10' 
1,2471 x 10' 
1.2445 x 10' 
1.2083 x 10' 
1.1208 x 10' 
8.1 11 1 x 10' 
4.3212 x 10' 
2.0338 x 10' 
1.8995 x 10' 
2.1651 x 10' 
4.2622 x 10' 
1.8995 x 10' 

1.2471 x 10' 

1.4309 x 10- 3 

6.5813 x 
9.6025 x lo-' 
1.2916 x lo-' 
1.5610 x lo-' 
1.7028 x lo-' 
1.8497 x lo-' 
2.3220 x lo-'  
3.0334 x lo-'  
5.2954 x 10- * 
8.1999 x lo-' 
9.6406 x lo-'  
9-7969 x lo-' 
9.9219 x lo-' 
9.9844 x 10- ' 
9.7969 x lo-' 

1.7028 x 10- ' 

V / I l l l 1 ' l  

Figure 15. Segments of the first four grids used for case C4 (one-quarter of each) 
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(absolute residual sums less than for Pr=O.l) .  The pure 
conduction heat transfer was solved first. Figure 16 shows the resulting isotherms. The total heat 
flux through the vertical cold wall and hot cylinder wall must be the same, since there is no heat 
transfer through the adiabatic horizontal walls and through the symmetry plane. In our 
calculations, this was ensured to seven most significant decimal places. Heat fluxes were, in this 
test case, normalized with the same normalization flux QN as in case C3. Thus, for the pure 
conduction heat transfer, a Nusselt number of 2.314 results (cf. Table VI). 

Figure 17 shows the velocity vectors for the convection flow at R a =  lo6 and two Prandtl 
numbers: (a) Pr=O.l  and (b) P r =  10. The corresponding streamlines are presented in Figure 18. 
Obviously, the Prandtl number has a large effect on the flow. Although in both cases, the 
Rayleigh number is the same, the Grashof number is larger for cases of smaller Prandtl number, 
since Re = Gr Pr .  For the fluid parameters used here, the buoyancy source of momentum is the 
same in both cases, but the viscosity is an order of magnitude lower for Pr=O.l .  Therefore, 
velocities almost an order of magnitude higher than at Pr = 10 result. Since the density is the same 
in both cases, the inertial forces will be significantly higher in the Pr=O. l ,  case. In the case of 
Pr = 10, the fluid starts leaving the cold wall and turning towards the hot cylinder already at half 
the height. At P r  =0.1, this happens only after the bottom adiabatic wall is reached (cf. Figure 17). 
For the same reason, at P r  =0.1, the hot fluid rising along the cylinder wall separates on the upper 
surface. Between the cylinder wall, symmetry plane and top adiabatic wall a weak eddy is formed 
which is attached to the main circuit at a free stagnation point (cf. Figure 18(a)). At P r  = 10, the 
fluid remains attached to the hot cylinder the entire length (cf. Figure 18(b)). 

for Pr=10,  and less than 

Figure 16. Isotherms of case C4 for pure conduction heat transfer 
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Velocity vectors - = 0.163 M/S 
Velocity vectors - = 0.019 M/S 

Figure 17. Predicted velocity vectors for case C 4  (a) Pr=O*l; (b) Pr=  10 
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(4 (b) 

Figure 18. Predicted streamlines for case C4, 256 x 128 CV grid (a) P r = @ l ;  (b) Pr=  10 
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The total heat fluxes through the cold vertical wall and cylinder wall were again normalized 
with QN and presented in Table VI as Nu. Also, the local heat flux maximum and minimum at the 
cold wall are shown, together with their position y* .  The isotherms for both Prandtl numbers are 
presented in Figure 19. A comparison with the isotherms for pure conduction (Figure 16) shows 
the effect of convection. Local Nusselt numbers along the cold vertical wall and cylinder wall, as 
predicted on the finest grid, are presented in Tables VIII and IX for Pr=O.l and 10, respectively. 
Apart from the 15 characteristic values, the maxima are given as additional entries. 

4. CONCLUSIONS 

Four test problems involving fluid flow and heat transfer in geometries requiring the use of 
boundary-fitted, non-orthogonal grids were designed. They are suggested to be used for testing 
new numerical methods for heat and fluid flow and are accompanied with accurate reference 
solutions. The major conclusions from the present study may be summarized as follows: 

1. Efficient finite volume multigrid methods are available for solving fluid flow and heat 
transfer problems in complex geometries involving a high degree of non-orthogonality. In 
one test case studied here the angle between grid lines was 30". 

2. Although the grid non-orthogonality and non-uniformity affect the magnitude of the 
truncation error on a given mesh, they do not prevent reduction of the discretization error 
by grid refinement. In all the cases studied here, which involve high non-orthogonality, 

Figure 19. Predicted isotherms for case C4, 256 x 128 CV grid (a) Pr =0.1; (b) Pr=  10 
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Table VIII. Selected values of the profiles of the local Nusselt number along the hot and 
cold walls for case C4 at Pr=O.l as predicted on the 256 x 128 CV grid 

Nu, e Nu, Y 

2.0142 x 10' 5.0166 x lo-' 6.4097 x 10- ' 3.9062 10- 3 
2.0282 x 10' 4.6500 x 10' 67785 x lo-' 3.5156 x lo-' 
2.1286 x 10' 1.8771 x 10' 7-6315 x lo-'  6.6406 x lo-' 
2.1241 x 10' 2.2934 x 10' 9.0363 x lo-'  9.7656 x lo-' 

1.2891 x lo-' 2.0500 x 10' 3.0519 x 10' 1.1134 x 10' 
1.5842 x 10' 5.4835 x 10' 1.6551 x 10' 1.8359 x lo-' 
1.4058 x 10' 6.6010 x 10' 5.4837 x 10' 4.8047 x lo-' 
1,1355 x 10' 8.6269 x 10' 7.5666 x 10' 6,0547 x lo-' 
9.6875 x 10' 9.7336 x 10' 8.7600 x 10' 6,6016 x 10- ' 
4,4214 x 10' 1.2452 x 10' 1.0954 x 10' 7,3828 x lo-' 
3,4129 x 10' 1.3140 x 10' 1.3282 x 10' 8.0859 x lo-' 
2,9059 x 10' 1.3616 x 10' 1.4389 x 10' 8.5547 x lo-' 
2.2728 x 10' 1.4546 x 10' 1.4558 x 10' 8,7891 x lo-' 
9,7626 x 10- ' 1.7396 x 10' 1.4255 x 10' 9.1016 x lo-' 

2.1300 x 10' 2.0186 x 10' 14558 x 10' 8.7891 x 10- ' 
8.9660 x 10- ' 1.7923 x 10' 1.2052 x 10' 9.9609 x 10- ' 

Table IX. Selected values of the profiles of the local Nusselt number along the hot and 
cold walls for case C4 at Pr = 10 as predicted on the 256 x 128 CV grid 

P r=  10 

1.8592 x 10' 
1.8559 x 10' 
1.8283 x 10' 
1.7878 x 10' 
1.7100 x 10' 
1.6041 x 10' 
1,5072 x 10' 
1.4181 x 10' 
1,2808 x 10' 
6.7174 x 10' 
5,4512 x 10' 
4.3752 x 10' 
2,2004 x 10' 
1.7557 x 10' 
1,6741 x 10' 

5.0166 x lo-' 
6.0643 x 10' 
1.8054 x 10' 
2.7543 x 10' 
4.0170 x 10' 
5.3683 x 10' 
6,4477 x 10' 
7.3457 x 10' 
8.6269 x 10' 
1.4056 x 10' 
1.5104 x 10' 
1.5903 x 10' 
1.7287 x 10' 
1.7721 x 10' 
1.7923 x 10' 

2.5183 x lo- '  
2.6753 x 10- ' 
3.0932 x lo-'  
5-8601 x lo- '  
1.0632 x 10' 
1.7164 x 10' 
2.5591 x 10' 
6.9512 x 10' 
9.6061 x 10' 
1.1521 x 10' 
1.3369 x 10' 
1.9523 x 10' 
1.9949 x 10' 
1.9915 x 10' 
1.8775 x 10' 
1.9949 x 10' 

3.9062 x lo-' 
2-7344 x lo-' 
50781 x lo-' 
1-1328 x lo-' 
1.7578 x 10- ' 
2.3828 x lo-' 
3.0078 x 10- ' 
5.5078 x lo-'  
6.7578 x lo-' 
7.4609 x 10- ' 
8.0078 x lo-' 
9.4141 x lo-'  
96484 x 10- ' 
97266 x 10- ' 
9.9609 x 10- ' 
96484 x 10- ' 

aspect ratios up to eight and moderate expansion ratios, the second-order convergence 
(error reduction by a factor of four), expected from central differencing, appears to prevail. 

3. Convergence of the solution method is strongly influenced by the Reynolds, Rayleigh and 
Prandtl numbers, and much less by the grid non-orthogonality, aspect ratio and expansion 
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ratio. More iterations are needed as the Reynolds and Rayleigh numbers increase and the 
Prandtl number decreases. 

4. The reference solutions presented here were obtained on fine grids of up to 320 x 320 control 
volumes. By comparing the solutions for grids with different fineness, the discretization 
errors were estimated to be of the order of 0.1% or less. The important features of the flow, 
e.g. vortex strength, centreline profiles, Nusselt numbers, etc., are presented in tabulated 
form to facilitate future comparisons. A proof of convergence towards a grid-independent 
solution is provided for most of these quantities. 

It is believed that the test cases presented here could become standard problems for testing new 
numerical solution methods, both in terms of accuracy and efficiency. 
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